Lie Algebras of Classical Type
نویسندگان
چکیده
منابع مشابه
Classical Lie algebras
1 Classical Lie algebras A Lie algebra is a vector space g with a bilinear map [, ] : g× g → g such that (a) [x, y] = −[y, x], for x, y ∈ g, and (b) (Jacobi identity) [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0, for all x, y, z ∈ g. A bilinear form 〈, 〉 : g× g → C is ad-invariant if, for all x, y, z ∈ g, 〈adx(y), z〉 = −〈y, adx(z)〉, where adx(y) = [x, y], (1.1) for x, y,∈ g. The Killing form is ...
متن کاملGeometric Representation Theory of Restricted Lie Algebras of Classical Type
We modify the Hochschild φ-map to construct central extensions of a restricted Lie algebra. Such central extension gives rise to a group scheme which leads to a geometric construction of unrestricted representations. For a classical semisimple Lie algebra, we construct equivariant line bundles whose global sections afford representations with a nilpotent p-character. Let G be a connected simply...
متن کاملGraphs for Classical Lie Algebras
A nonzero element x of a Lie algebra L over a field F is called extremal if [x, [x,L]] ⊆ Fx. Extremal elements are a well-studied class of elements in simple finite-dimensional Lie algebras of Chevalley type: they are the long root elements. In [CSUW01], Cohen, Steinbach, Ushirobira and Wales have studied Lie algebras generated by extremal elements, in particular those of Chevalley type. The au...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indiana University Mathematics Journal
سال: 1957
ISSN: 0022-2518
DOI: 10.1512/iumj.1957.6.56024